

3rd Annual *Indoor Air Quality Tools for Schools*National Symposium

August 8, 2002

Bob Axelrad
Indoor Environments Division
U.S. Environmental Protection Agency

Session Objectives

- Provide a brief overview of new Design Tools for Schools guidance now in development
- Describe new software to help schools make key ventilation and moisture control design decisions
- Make the connection between indoor air quality and High Performance Schools of the future

IAQ Design Tools for Schools

- New voluntary web-based guidance for design, construction, renovation, and operations and maintenance of school facilities
- Complements IAQ Tools for Schools guidance for existing schools
- Based on expertise from many sources:
 - State & local initiatives (e.g., CHPS, WA State, NYC Guidelines, SBIC, etc.)
 - In-house expertise

Why Design Guidance?

- 55 million people (53 million children) spend their days in the nation's 110,000 K-12 schools
- 6000 new schools will need to be built in the US by 2007
- Design decisions directly impact student and staff exposure to contaminants
 - Heating, ventilating, and air conditioning systems introduce, filter and distribute outside air and pollutants and play an important role in moisture control
 - Many contaminant sources can be both introduced as well as controlled through design decisions
- Construction practices play a critical role in moisture control

Why Design Guidance? (cont.)

- Failure to control moisture and outdoor and indoor pollutant sources can lead to:
 - Exposure of children and staff to mold and other allergens, particles, volatile organic compounds (chemicals), pesticides, and gases (e.g., radon, CO)
 - Respiratory illnesses including asthma (biggest cause of absenteeism due to chronic illness w>10 million missed school days per year), allergic reactions, and a variety of other illnesses and symptoms
- Failure to provide adequate ventilation reduces concentration and learning

Why Design Guidance? (cont.)

- Repercussions of poor design, construction and renovation practices may also include:
 - Loss of critical funding tied to attendance
 - Possible school closings -- both temporary and permanent (e.g., Belmont School, LA)
 - Potential liability

- Introduction
- Design Overview
- Pre-Design
- Schematic Design
- Heating, Ventilation, and Air-Conditioning (HVAC)
- Controlling Pollutants and Sources
- Moisture Control
- Construction
- Commissioning
- Operations and Maintenance
- Renovation and Repair
- Portable Classrooms

- Hot Topics: Mold, moisture, siting, portable classrooms, material selection
- Site Map
- Links
- Facilities and Learning
- High Performance Schools
- Tool Box: checklists, case studies, IBEAM, SAVES

Next Steps

- Formal public comment period closed July 19, 2002
- Comments now being integrated
- Final posted this fall
- Suggestions still welcome

http://www.epa.gov/iaq/schooldesign/start.html

School Advanced Ventilation Engineering Software (SAVES)

Greg Bruner
U.S. Environmental Protection Agency
3rd Annual Indoor Air Quality Tools for Schools
National Symposium
August 8, 2002

Buying and Operating School Ventilation Equipment Costs \$\$\$

- High occupant densities of schools often result in relatively high outdoor air ventilation requirements
 - ASHRAE Standard 62-1999: 15 cfm/occupant in classrooms
 - Can create challenges for designers to minimize initial equipment costs and operating (energy) costs
 - Increased ventilation rates can also lead to indoor humidity problems in some locations

Ventilation is Important for IAQ

- Proper ventilation with outdoor air is a key action for good indoor air quality in schools
 - Failure to provide adequate ventilation reduces concentration and learning
- Existing, off-the-shelf technologies can be used in some cases to help mitigate the negative cost and moisture impacts of high ventilation rates in schools
 - Includes energy recovery ventilation systems

School Advanced Ventilation Engineering Software (SAVES)

Indoor Humidity Assessment Tool

 Simple tool to evaluate the impacts of various design strategies on indoor humidity levels in schools (including energy recovery ventilation)

ERV Financial Assessment Software Tool

- Simple tool to assess the financial viability of energy recovery ventilation systems for school applications (simple payback and life cycle cost savings)
- Intended audience includes school designers (engineers and architects) and school procurement decision-makers

SAVES Map

Zone 1: Total-Recovery or Sensible-Only-Recovery ERV Systems Recommended
-Total-Recovery Payback Typically 0 to 2 Years
-Sensible-Only-Recovery Payback Typically 2 to 7 years

Zone 2: Total-Recovery ERV Systems Recommended
-Total Recovery Payback Typically Immediate

Zone 3: Total-Recovery or Sensible-Only-Recovery ERV Systems Recommended

- Payback for Both Configuratioons Typically 2 to 7 years

Zone 4: Conventional Ventilation Recommended, ERV Payback Typically Exceeds 7 Years

NOTE: MAP BASED ON SEVERAL ASSUMPTIONS

Please click on your state below to find out which zone your city resides in.

How Can I Get SAVES?

SAVES Website:

www.epa.gov/iaq/schooldesign/saves.html

- Both software tools are available for download
- Supporting background information, instructions and guidance for using the software are also provided

CD-ROM and Marketing Brochure:

 Under development and coming soon (est. late summer 2002)